Response gene to complement 32 promotes vascular lesion formation through stimulation of smooth muscle cell proliferation and migration.

نویسندگان

  • Jia-Ning Wang
  • Ning Shi
  • Wei-Bing Xie
  • Xia Guo
  • Shi-You Chen
چکیده

OBJECTIVE The objectives of this study were to determine the role of response gene to complement 32 (RGC-32) in vascular lesion formation after experimental angioplasty and to explore the underlying mechanisms. METHODS AND RESULTS Using a rat carotid artery balloon-injury model, we documented for the first time that neointima formation was closely associated with a significantly increased expression of RGC-32 protein. Short hairpin RNA knockdown of RGC-32 via adenovirus-mediated gene delivery dramatically inhibited the lesion formation by 62% as compared with control groups 14 days after injury. Conversely, RGC-32 overexpression significantly promoted the neointima formation by 33%. Gain- and loss-of-function studies in primary culture of rat aortic smooth muscle cells (RASMCs) indicated that RGC-32 is essential for both the proliferation and migration of RASMCs. RGC-32 induced RASMC proliferation by enhancing p34(CDC2) activity. RGC-32 stimulated the migration of RASMC by inducing focal adhesion contact and stress fiber formation. These effects were caused by the enhanced rho kinase II-α activity due to RGC-32-induced downregulation of Rad GTPase. CONCLUSIONS RGC-32 plays an important role in vascular lesion formation following vascular injury. Increased RGC-32 expression in vascular injury appears to be a novel mechanism underlying the migration and proliferation of vascular smooth muscle cells. Therefore, targeting RGC-32 is a potential therapeutic strategy for the prevention of vascular remodeling in proliferative vascular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrative Physiology and Experimental Medicine Response Gene to Complement 32 Promotes Vascular Lesion Formation Through Stimulation of Smooth Muscle Cell Proliferation and Migration

Objective—The objectives of this study were to determine the role of response gene to complement 32 (RGC-32) in vascular lesion formation after experimental angioplasty and to explore the underlying mechanisms. Methods and Results—Using a rat carotid artery balloon-injury model, we documented for the first time that neointima formation was closely associated with a significantly increased expre...

متن کامل

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

Corrigendum: Interferon regulatory factor 9 is critical for neointima formation following vascular injury

Interferon regulatory factor 9 (IRF9) has various biological functions and regulates cell survival; however, its role in vascular biology has not been explored. Here we demonstrate a critical role for IRF9 in mediating neointima formation following vascular injury. Notably, in mice, IRF9 ablation inhibits the proliferation and migration of vascular smooth muscle cells (VSMCs) and attenuates int...

متن کامل

IQGAP1 links PDGF receptor-β signal to focal adhesions involved in vascular smooth muscle cell migration: role in neointimal formation after vascular injury.

Platelet-derived growth factor (PDGF) stimulates vascular smooth muscle cell (VSMC) migration and neointimal formation in response to injury. We previously identified IQ-domain GTPase-activating protein 1 (IQGAP1) as a novel VEGF receptor 2 binding scaffold protein involved in endothelial migration. However, its role in VSMC migration and neointimal formation in vivo is unknown. Here we show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 31 8  شماره 

صفحات  -

تاریخ انتشار 2011